
   

 

Specification for FoxTalk™ 

TCP/IP Protocol 

 Version 1.1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer Projects of Illinois, Inc. 

475 Quadrangle Dr. Suite A 

Bolingbrook, IL  60440 

(630) 754-8820 
 

 

 



FoxTalk™  Protocol Specification 

 

 

 

 

 

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * * 



Protocol Specification  FoxTalk™ 

Ver. 1.1  Company Confidential Pg.  i    

 
Table of Contents 

 
 
 
1 Overview .................................................................................................................... 3 

1.1 Connection Oriented ......................................................................................... 3 

1.2 Message Framing .............................................................................................. 3 

1.3 Content Negotiation .......................................................................................... 4 

1.4 Application Acknowledgement ........................................................................ 4 

1.5 Connection Maintenance .................................................................................. 5 

1.6 Frame Exchange Methodology ........................................................................ 5 

 

2 Protocol Flow ............................................................................................................. 7 

2.1 TCP Connect ..................................................................................................... 7 

2.2 Connect Message ............................................................................................... 7 

2.3 Encryption Negotiation .................................................................................... 8 

2.4 Device Identification ......................................................................................... 8 

2.5 Regular Messaging ............................................................................................ 9 

2.6 Idle Line Maintenance ...................................................................................... 9 

2.7 Connection Closure ........................................................................................... 9 

 

3 Message Framing .................................................................................................... 11 

 

4 FoxTalk™ Header .................................................................................................. 13 

4.1 Exchange ID .................................................................................................... 13 

4.2 Frame Type...................................................................................................... 14 

4.2.1 Type C ...................................................................................................... 14 

4.2.2 Type M ..................................................................................................... 15 

4.2.3 Type A ...................................................................................................... 15 

4.2.4 Type N ...................................................................................................... 15 

4.2.5 Type H ...................................................................................................... 16 

4.2.6 Type K ...................................................................................................... 16 

4.2.7 Type I ....................................................................................................... 16 

4.2.8 Type E ...................................................................................................... 17 

4.3 End-Of-Exchange Indicator ........................................................................... 17 

 

5 Connect Message Details ........................................................................................ 19 

5.1 Major Version Number .................................................................................. 20 

5.2 Minor Version Number .................................................................................. 20 

5.3 Maximum Frame Length ............................................................................... 20 

5.4 Maximum Idle Length .................................................................................... 20 

5.5 Default Timeout .............................................................................................. 21 

5.6 Use Encryption ................................................................................................ 21 

5.7 Object Coding Technique............................................................................... 21 

5.8 Newline Sequence ............................................................................................ 22 



FoxTalk™  Protocol Specification 

Pg. ii Company Confidential Ver. 1.1 

6 Encryption ............................................................................................................... 23 

6.1 Key Negotiation ............................................................................................... 23 

6.1.1 K1 Message .............................................................................................. 23 

6.1.2 K2 Message .............................................................................................. 24 

6.1.3 K3 Message .............................................................................................. 25 

6.2 FoxTalk™ Frame Encryption Technique .................................................... 26 

6.2.1 Encryption Technique ............................................................................ 26 

6.2.2 Decryption Technique ............................................................................ 26 

6.2.3 Frame Length Calculation ..................................................................... 27 

6.2.3.1 Example 1 ............................................................................................ 27 

6.2.3.2 Example 2 ............................................................................................ 28 

 

7 Device Identification ............................................................................................... 29 

 

Appendix A – FoxTalk™ Examples .............................................................................. 31 

Example 1: Connect message exchange .................................................................... 31 

Example 2: Heartbeat exchange ................................................................................ 34 

Example 3: Non-encrypted single frame data message ........................................... 35 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 3    

1 Overview 

 
The FoxTalk™ Protocol was developed by CPI to interface our various client software 

products with our OpenFox™ Message Switch in a consistent manner.  CPI considers the 

protocol open to implementation by anyone, and will freely release the specification.  

There are no royalty or license charges for use of the FoxTalk™ Protocol. 

 

The FoxTalk™ Protocol represents an application-to-application protocol for use over a 

TCP/IP communications session.  The protocol introduces a method for the client and 

server to negotiate session parameters at startup and specifies a formatting standard for 

delineating data within the TCP/IP data stream.  

 

TCP/IP provides a connection-oriented data stream for applications to communicate.  The 

low level drivers will guarantee that data will arrive at the destination end of an 

established session in the order it was sent by the originating side.  It will also guarantee 

that data is successfully delivered before it is removed from the originators outbound 

buffer.  The application level must solve all remaining communications issues.  Below is 

an overview of each communications challenge and how it is addressed within the 

FoxTalk™ Protocol. 

 

1.1 Connection Oriented 

 
The FoxTalk™ Protocol specifies that an open TCP session is maintained at all 

times to allow the smallest possible delay in communications.  The law 

enforcement environment involves unsolicited messages flowing at any time in 

either direction, from the client to the switch or vice versa.  Frequently these 

messages contain time sensitive information such as hit requests or dangerous 

weather notifications.  Maintaining an open communications link insures that 

these message may flow immediately, inbound or outbound. 

 

1.2 Message Framing 

 
Since TCP/IP provides a stream format for data exchange, the applications must 

use a consistent method to delineate the beginning and ending of a message 

within the data stream.  The FoxTalk™ Protocol uses a framing technique that is 

very similar to the NCIC-2000 framing method.  The protocol specifies a start and 

stop pattern identical to NCIC-2000 framing, and a frame length which is 

extended to 32-bits from the NCIC-2000 standard of 16-bits.  The hybrid frame 

allows more flexibility for large frames while maintaining a familiarity to anyone 

with experience in the law enforcement market. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 4 Company Confidential Ver. 1.1 

 

1.3 Content Negotiation 

 
In modern law enforcement messaging environments the message switch is 

frequently at the center of a network of dissimilar communicating applications.  

Often times the end applications are developed by many different vendors or are 

going through upgrades where a common vendor may have multiple versions of 

an application in the field at once.  These different clients will typically have 

different capabilities.  FoxTalk™ will allow clients of different capabilities to 

communicate successfully without relying on OpenFox™ system administrators 

to make configuration changes to each device.  The session parameters will be 

negotiable by the client after connecting.  The features that may be negotiated 

include: 

 
 Maximum frame length allowed 
 Use encrypted data or plain text 
 Allow binary object transmissions (such as images) or not, and if so 

specify encoding technique 
 Specify new-line sequence for text blocks 
 Specify maximum allowed idle time and default timeout 

 
This negotiation technique allows image capable and non-image capable devices 

to specify their preference on session establishment.  If a non image capable 

device is later upgraded to be image capable the new software version simply 

negotiates image capability with OpenFox™, thus obviating the need for an 

administrator to change the device configuration tables.  The maximum frame 

length will allow multiple clients to negotiate different block sizes without relying 

on individually configuring each device differently.  The ability to request 

unencrypted data will be useful in a site where the network routers perform 

encryption.  In such a case the software encryption only adds overhead and may 

be safely disabled.  Making this parameter negotiable allows client developers to 

add flexibility to their product’s configuration.  Finally, the ability of the client to 

specify his preferred new-line sequence removes ambiguity from parsing 

messages specifically for new-lines and guarantees an acceptable presentation 

format on the client’s system. 

1.4 Application Acknowledgement 

 
Since an application program could fail after the confirmed arrival of data at the 

TCP layer but before the application has read the data out of the TCP receive 

buffer the possibility of data loss exists unless applications send 

acknowledgements to each after successfully receiving data.  FoxTalk™ specifies 

a simple application acknowledgement to secure the communications link from 

data loss. 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 5    

1.5 Connection Maintenance 

 
Because FoxTalk™ specifies that an open TCP session exist at all times when an 

application is ready and able to exchange data, a simple heartbeat mechanism is 

used to catch link or application failures in a timely fashion.  The danger in not 

using heartbeats lies in the client’s ability to detect that it is no longer connected 

to the switch.  For example, many workstations function primarily as receivers 

(such as unattended printers) and don’t have a large volume of transactions 

initiated to the switch.  Since these devices rarely send any data they can’t rely on 

send failures to detect a failed link.  In these cases, if a half session failure occurs 

it will be unlikely that anyone will notice;  meanwhile the workstation may not be 

receiving messages that are queued on the message switch.  Heartbeats will allow 

an unattended application to recognize that the link has failed and automatically 

re-establish connectivity. 

 

1.6 Frame Exchange Methodology 

 

The FoxTalk™ protocol functions by building frames of information and 

exchanging them.  This is what guarantees that every message sent receives some 

sort of acknowledgement from the other side – every meaningful task is an 

exchange of frames.  For example, session parameters are negotiated after startup 

by exchanging Connect Message frames.  An idle session is maintained through a 

Heartbeat exchange.  A data message is delivered through the exchange of one or 

more data message frames and a corresponding ACK or NAK frame. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 6 Company Confidential Ver. 1.1 

 

 

 

 

 

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * * 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 7    

2 Protocol Flow 

 
The FoxTalk™ protocol requires that a device establish a TCP/IP session with the 

OpenFox™ message switch and negotiate session parameters to create an open session.  

Once the session is open, messages can be initiated at any time in either direction.  Every 

message must get a response from the recipient before the next message is sent.  If the 

maximum idle time is reached the client must send a heartbeat.  The OpenFox™ will 

respond by echoing the heartbeat back to the client.  Below is a description of each of the 

required steps in detail. 

 

2.1 TCP Connect 

 
The client should establish a TCP connection with the OpenFox™ IP address and 

published port number.  These values are unique to each account and must be 

determined by each account’s system administrators.  If a TCP connect fails the 

client should wait a minimum of 30 seconds before attempting another 

connection request.  Failure to delay between connection requests can cause a 

condition resembling a denial of service attack to exist on the message switch 

network and must be avoided.  After a successful connection has been established 

the client should send a FoxTalk™ connect message as the first step in 

negotiating session parameters. 

 

2.2 Connect Message 

 
After accepting a TCP connection from a client the OpenFox™ message switch 

will require that the next message received be a FoxTalk™ connect message.  The 

client should choose from the available session parameter choices, construct a 

connect message, and send the message to OpenFox™.  OpenFox™ will adjust 

the values in the connect message to values that OpenFox™ can support and that 

are required by the context in which OpenFox™ and the client are 

communicating.  OpenFox™ will then return the connect message with the 

altered parameters.  The client must be able to process the parameters as they are 

returned from OpenFox™.  If the client is unable or unwilling to do so it should 

disconnect from OpenFox™ and notify the user that it is unable to accept the 

parameters required by OpenFox™.  If the client is able to accept the parameters 

then a successful communications session has been established.  If encryption has 

been negotiated, then the client and server must immediately exchange a series of 

Key Negotiation messages to set the encryption key for the session.  Otherwise, 

message flow in either direction may commence immediately.  Please see the 

detailed documentation of the connect message options in section 5 – Connect 

Message Details. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 8 Company Confidential Ver. 1.1 

2.3 Encryption Negotiation 

 

Upon negotiating an encrypted session, the server and client must exchange a 

series of frames to securely choose a random encryption key for this session.  

FoxTalk™ sessions use a random 128-bit AES key for each session, and then key 

lives only as long as the session.  To set this key a series of Key Negotiation 

frames (Type ‘K’) are send back and forth as follows: 

 Servers sends the client a Server Nonce frame 

 Client uses 2048-bit public RSA key of server to encrypt a message contained 

the server nonce, a client nonce, and an AES key chosen at random by a 

cryptographically secure pseudo-random number generator. 

 The server sends the client nonce back to the client having encrypted it with 

the randomly chosen AES key 

 

This sequence of messages prevents replay attacks (through the use of the server 

nonce), allows the client to authenticate that he is actually talking to the 

OpenFox™ message switch server (one-way authentication provided by the RSA 

key), and allows the client to detect a man-in-the-middle by receiving his client 

nonce back from the server.  Also, since the client has to use the randomly chosen 

AES key to decrypt the client nonce, the client can be sure the server has set the 

AES key for the session properly.  Please see detailed documentation of the Key 

Negotiation sequence in section 6 – Encryption. 

2.4 Device Identification 

 

In the case of the client being an OpenFox™ Desktop software client, the 

OpenFox™ requires that the desktop software send its registered and encrypted 

license file to identify the device.  This happens in the device identification step, 

where the Desktop software uses a Type ‘I’ message (Identify) to transmit the 

license file received during registration to the OpenFox™ .  It should be noted 

that this registration file is encrypted with an AES key that only the server knows, 

so that this data is just an opaque (and unreadable) data blob to the client.  Upon 

receiving this file OpenFox™ will allow the Desktop session to begin normal 

message exchange.  Please see detailed documentation of the Device 

Identification phase in section 7 – Device Identification. 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 9    

2.5 Regular Messaging 

 
After the connection negotiation has finished messages may flow in either 

direction.  A message originator must receive an acknowledgement from the other 

side before sending another outbound message.  For example, if the client has 4 

messages to send to OpenFox™, it must send one and then wait for OpenFox™ to 

respond with a FoxTalk™ acknowledgement.  Then it may send the second 

message (and so on).  In the event that a message’s length would cause a single 

FoxTalk™ frame to exceed the negotiated maximum frame length it must be 

broken into multiple frames.  There is no acknowledgement between frames.  A 

series of frames are simply built with all but the last having an End-Of-Exchange 

code of ‘N’ in the header.  The last frame should have an End-Of-Exchange code 

of ‘Y’.  The Exchange ID field should be identical for each frame of the message.  

There is no need to worry about the frames arriving out of order at the other end 

since the low level TCP drivers will insure that that doesn’t happen.  After 

receiving the final frame of a multi-frame message the recipient will send a 

FoxTalk™ acknowledgement.  If no acknowledgement is received by the sender, 

then the entire message must be retransmitted.  Please note that a message 

originator may choose to send a message as multiple frames even if the individual 

frame lengths don’t reach the maximum negotiate frame length.  In other words, 

the message originator may choose to break a message into frames of any length 

up to the maximum negotiated frame length.  The breaks may occur at any place 

in a message. 

 

2.6 Idle Line Maintenance 

 
In the event that a session exceeds the negotiated maximum idle time it must send 

a FoxTalk™ Heartbeat to OpenFox™.  OpenFox™ will immediately echo the 

heartbeat back (so that the peer can verify that the connection is still alive).  If an 

application sends a heartbeat to OpenFox™ but does not receive a heartbeat back 

within the negotiated default timeout it should consider the link dead and close 

the connection. 

 

2.7 Connection Closure 

 
An active FoxTalk™ session may be closed by either side at any time.  An 

application using FoxTalk™ must be able to handle a connection being closed.  

The proper action upon receiving a close is wait at least 30 seconds and then 

attempt to re-connect.  If the re-connect attempt fails, wait another 30 seconds and 

retry (and so on) until the connection is successful. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 10 Company Confidential Ver. 1.1 

 

 

 

 

 

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * * 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 11    

3 Message Framing 

 
As covered in the overview, the FoxTalk™ Protocol makes use of a basic message frame 

that is very similar to the NCIC-2000 framing technique.  The exception is that 

FoxTalk™ specifies a 32-bit frame length field (as opposed to the 16-bit NCIC-2000 

standard).  Within the FoxTalk™ frame is a header and payload section (message 

content).  Below is a table depicting the FoxTalk™ frame. 

 

Element Description 

Frame Start Pattern 32-bit unsigned integer in network byte order having the 

hexadecimal value FF00AA55 

Frame Length 32-bit unsigned integer in network byte order that contains 
the overall length of the frame, including the start pattern, 
frame length field, protocol header, frame payload and 
stop pattern.  This value must be at least as large as the 
framing overhead and must be no larger than the 
maximum negotiated frame length. 

Frame Header FoxTalk™ Header – documented below 

Frame Payload Variable length frame content.  In the case of protocol 
frames this field is normally zero-length.  In the case of 
message transmission this field holds the message 
content. 

Frame Stop Pattern 32-bit unsigned integer in network byte order having the 

hexadecimal value 55AA00FF 

 
The framing structure allows the recipient to find a clearly delineated frame within the 

TCP/IP data stream.  The FoxTalk™ framing technique adds a fixed overhead of 12 bytes 

to every transmission.  After receiving a frame an application will parse the header to 

determine the meaning and content of the frame. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 12 Company Confidential Ver. 1.1 

 

 

 

 

 

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * * 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 13    

4 FoxTalk™ Header 

 
As documented above, the framing technique delineates a FoxTalk™ Frame.  Within the 

frame is the frame header which conveys FoxTalk™ protocol information (in a 

FoxTalk™ Header).  Below is a table representing the FoxTalk™ header. 

 

Element Description 

Exchange ID 16-bit unsigned integer in network byte order.  This 
value is created by the originator and echoed by the 
receiver in the resultant ACK, NAK, Connect or 
Heartbeat response. 

Frame Type Single ASCII byte having the value A, N, M, H or C. 

End-Of-Exchange 
Indicator 

Single ASCII byte having the value Y or N. 

 
In the next sections the individual elements are documented one at a time.  The terms 

FoxTalk™ Header and Frame Header are synonymous. 

 

4.1 Exchange ID 

 
Every exchange in FoxTalk™ must receive a response from the recipient.  The 

Exchange ID field is meant as a method to double check that the response 

received is actually for the last item sent.  The originator of a FoxTalk™ frame 

should select a unique value for the Exchange ID field.  He may use a pseudo-

random algorithm or an incrementing integer value.  There is no requirement that 

the value has any relation to a previously used ID other than that it should be 

different from the last one used.  The value must a 16-bit unsigned integer in 

network byte order.  In the case of multi-frame data messages, each frame of a 

single data message must use the same Exchange ID value (as the frames together 

comprise a single FoxTalk™ exchange). 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 14 Company Confidential Ver. 1.1 

When a receiving application sends an acknowledgement it should set the 

Exchange ID field of it’s response to the Exchange ID value of the frame (or 

frames) it has just received.  Please note that the Exchange ID value applies only 

at the protocol level and does not relate to logical message responses.  In other 

words, suppose a client were to generate a QV transaction to NCIC.  It would 

construct a FoxTalk™ frame to hold the inquiry message and choose an Exchange 

ID field.  For the purpose of example, let’s say it chose hex 0A17.  After 

receiving this message, the OpenFox™ switch would respond with a FoxTalk™ 

Acknowledgement frame containing an Exchange ID of hex 0A17.  The 

OpenFox™ would then switch the inquiry to NCIC.  After receiving an NCIC 

response, OpenFox™ would build a FoxTalk™ frame to hold the NCIC response 

and choose an Exchange ID field.  For the purpose of example, let’s say it chose 

hex 7453.  OpenFox™ would send the data message frame to the client and the 

client would respond with a FoxTalk™ ACK message with the Exchange ID set 

to hex 7453.  This example demonstrates how the Exchange ID field is related to 

protocol exchanges rather than transaction exchanges. 

 

4.2 Frame Type 

 
The Frame Type field is a single ASCII byte having one of the following values: 

 

Frame Type Description 

C Connection message – used to negotiate session 
parameters. 

M Data message. 

A Positive acknowledgement. 

N Negative acknowledgement. 

H Heartbeat 

K Key negotiation message 

I Device identification message 

E Encrypted data message 

 

4.2.1 Type C 

 
The Connect Frame Type indicates that a connection message will occupy 

the frame payload.  Please see section 5 – Connect Message Details.  

Type C frame headers will never contain encryption fields and will always 

be single-frame messages (i.e. the End-Of-Exchange field must be set to 

‘Y’). 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 15    

4.2.2 Type M 

 
The data message Type indicates that the frame payload will contain all or 

part of a data message.  The End-Of-Exchange indicator in the FoxTalk™ 

header will determine whether this frame is the end of message or not.  

Encryption fields will be present in the Frame Header if encryption was 

negotiated to ‘Y’ (during the connect message exchange) and absent 

otherwise. 

 

4.2.3 Type A 

 
The acknowledgement Type is used to tell the other side of the connection 

that the last data message was safely received.  The Exchange ID field in 

the FoxTalk™ header must match the Exchange ID of the last received 

data message (the data message which is being acknowledged).  The Type 

A frame is always a single frame (the End-Of-Exchange field must be ‘Y’) 

and must never contain any frame payload data.  Encryption fields must 

never be present on Type A frames. 

 

4.2.4 Type N 

 
The negative acknowledgement may be used to inform the other side of a 

connection that the last received data message contained errors, or was 

otherwise not processed successfully.  FoxTalk™ leaves the decision of 

how to handle NAKs up to the implementer.  Reasonable actions include 

spilling the message to an error console, or retrying up to a reasonable 

retry limit.  If the OpenFox™ encounters protocol errors with a received 

data message it will generate a NAK if possible.  The Frame Payload of a 

Type N frame should contain a printable ASCII text error message 

describing the error condition encountered.  Type N frames must have be 

single frame (End-Of-Exhange must be ‘Y’) and must never contain 

encryption header fields. 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 16 Company Confidential Ver. 1.1 

4.2.5 Type H 

 

The FoxTalk™ Heartbeat is sent by the client when a session has reached 

the maximum negotiated idle time.  The Type H frame is always a single 

frame with no payload data.  The OpenFox™ will immediately return a 

Heartbeat to the client (with the same Exchange ID as received from the 

client) so that the client may verify the status of the connection as well.  If 

the OpenFox™ does not receive a heartbeat in twice the maximum idle 

time (i.e. it misses two consecutive heartbeats from the client) the link will 

be considered dead and the connection will be closed.  Likewise, if the 

client does not receive a response to a heartbeat from OpenFox™ within 

the negotiated Default Timeout it should consider the link dead and go 

through a close-and-retry cycle. 

 

4.2.6 Type K 

 

The Type K message is used to negotiate a symmetric encryption key for 

the AES cipher.  If encryption is negotiated to ‘Y’ during the Connect 

Message exchange, the server will immediately send the client a Type K 

message containing a server nonce.  The client must chose a random client 

nonce and AES key, then combined with the server nonce, concatenate all 

three values together and encrypt this message with the 2048-bit RSA 

public key of the OpenFox™.  This resultant message is sent to the 

OpenFox™ as another Type K message.  Finally, OpenFox™ responds 

with a third Type K message that contains the encrypted client nonce 

echoed back so that the client knows the encryption negotiation has 

completed successfully. 

 

4.2.7 Type I 

 

The Type I message is used after the Connect Message exchange if no 

encryption was negotiated, and after the encryption key negotiation phase 

if encryption was negotiated.  Not all implementations of FoxTalk™ will 

use the Type I message.  OpenFox™ Desktop clients use this message to 

send the OpenFox™ server the encrypted copy of their registered license 

and thus perform device identification.  Some implantations (for regional 

servers, for instance) identify devices based off of the client’s IP address.  

Others use a logon message.  When the Type I frame is used, for example 

in OpenFox™ Desktop, this message must be sent before regular message 

exchange can commence. 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 17    

4.2.8 Type E 

 
The Type E message is used to send encrypted data messages.  This type 

may only be used on sessions that have negotiated encryption to ‘Y’.  If 

encryption has been negotiated, than all data messages must be Type E;  

any Type M messages received by OpenFox™ will be NAK’d.  The Type 

E message follows a construction where the plain text is appended with a 

SHA-1 hash value of itself, then encrypted using AES in CBC mode with 

a randomly chosen IV (Initialization Vector).  The Type E frame contains 

the IV and the encryption output. 

 

4.3 End-Of-Exchange Indicator 

 
The End-Of-Exchange Indicator is a single ASCII byte, having value ‘Y’ or ‘N’, 

used on Type M (data message) frames to indicate whether this frame is the end 

of the current data message.  All other Frame Types must always have End-Of-

Exchange set to ‘Y’.  The recipient of a data message should not send an 

acknowledgement to any data message frame until the End-Of-Exchange ‘Y’ 

frame (termed the end of message frame) is received.  If an acknowledgement to a 

data message is not received within the negotiated Default Timeout the message 

sender should resend the entire message (including all End-Of-Exchange ‘N’ - 

non end of message - frames). 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 18 Company Confidential Ver. 1.1 

 

 

 

 

 

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * * 

 

 
 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 19    

5 Connect Message Details 

 
This section of the document will provide the details of the Connect message.  As 

documented above, after establishing a TCP session with OpenFox™ a client must send a 

Connect Message.  The Connect Message will contain the clients preferred session 

attributes.  The OpenFox™ will modify any of the parameters that it needs to and return 

the Connect Message with the final parameters.  The client must understand and be able 

to comply with all the parameters in the returned Connect Message.  If the client is 

unable to comply with the parameters returned by OpenFox™ it must then disconnect 

and notify the user. 

 
Below is a table depicting the Connect Message: 

 

Element Description 

Major Version Number 16-bit unsigned integer in network byte 
order containing the major version 
number of the FoxTalk™ protocol in 
use. 

Minor Version Number 16-bit unsigned integer in network byte 
order containing the minor version 
number of the FoxTalk™ protocol in 
use. 

Maximum Frame Length 32-bit unsigned integer in network byte 
order containing the maximum allowed 
frame length, send or receive. 

Maximum Idle Time 16-bit unsigned integer in network byte 
order containing the maximum idle time 
in seconds.  When this idle time is 
exceeded a heartbeat message must 
be sent. 

Default Timeout 16-bit unsigned integer in network byte 
order containing the default timeout in 
seconds.  This is the max time a client 
should wait for acks or heartbeat 
echoes, and the minimum time it 
should wait between connect attempts. 

Use Encryption A single ASCII character having the 
value „Y‟ or „N‟. 

Object Coding Technique A string of 3 ASCII characters having 
the value “NON”, “HEX” or “B64”. 

Newline Sequence A string of 4 ASCII characters having 
the value of “LF  “, “CR  “ or “CRLF”. 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 20 Company Confidential Ver. 1.1 

Each field of the connect message is discussed in detail below. 

 

5.1 Major Version Number 

 
This field is a 16-bit unsigned integer in network byte order that contains the 

major version number of the FoxTalk™ protocol in use.  This field is meant to 

allow the OpenFox™ message switch to simultaneously communicate with 

multiple clients of varying version.  As of this writing the only major version 

number is 1. 

 

5.2 Minor Version Number 

 
This field is a 16-bit unsigned integer in network byte order that contains the 

minor version number of the FoxTalk™ protocol in use.  This field is meant to 

allow the OpenFox™ message switch to simultaneously communicate with 

multiple clients of varying version.  This book documents FoxTalk™ minor 

version 1. 

 

5.3 Maximum Frame Length 

 
This field is a 32-bit unsigned integer in network byte order that contains the 

maximum allowable frame length.  This field should be set to the largest frame 

that the client is willing to handle when the client sends its Connect Message to 

OpenFox™.  OpenFox™ will never return a value larger than what the client has 

specified but may return a smaller number.  The client must honor the number 

returned by OpenFox™.  Any frames that are received containing a length larger 

than the negotiated maximum will be rejected by OpenFox™. 

 

5.4 Maximum Idle Length 

 
This field is a 16-bit unsigned integer in network byte order that contains the 

maximum allowable idle time before a heartbeat message must be sent.  The 

client should leave this field set to 0 in it’s connect message and should use the 

value returned by OpenFox™. 

 

 
 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 21    

5.5 Default Timeout 

 
This field is a 16-bit unsigned integer in network byte order that contains the 

default timeout for acks/naks and heartbeats.  The client should leave this field set 

to 0 in it’s connect message and should honor the value returned by OpenFox™.  

This is the maximum amount of time that OpenFox™ or the client should wait for 

a message acknowledgement (or nak) before retrying.  It is also the maximum 

length of time that the client should wait for a heartbeat to be echoed by 

OpenFox™ before considering the link dead.  It is also the minimum amount of 

time a client should wait after a connection close before retrying the connection. 

 

5.6 Use Encryption 

 
This field is a single printable ASCII character having the value ‘Y’ or ‘N’.  The 

client should set this field to ‘Y’ if it wants to send and receive encrypted 

messages, and ‘N’ if not.  The OpenFox™ will return a ‘Y’ or ‘N’ to signify 

whether or not encryption will be used.  Please note that in some cases the 

network layer is not encrypted and CJIS security policy dictates that all law 

enforcement traffic over a public line must be encrypted.  In these cases, even if a 

client requests no encryption OpenFox™ may override the value with a ‘Y’.  If 

the client in this situation is unable to support encryption it must disconnect from 

OpenFox™ and notify the user that encryption is required. 

 

5.7 Object Coding Technique 

 
This field is a string of three printable ASCII characters.  The following table 

shows the allowable strings and their respective meanings. 

 
T

h

e

 

c

l

i

e

The client should set this field to the string that reflects the way it wants to handle 

binary objects (such as images).  OpenFox™ will always honor the choice of the 

client in this field and will return the identical string when it returns the connect 

message. 

String Meaning 

“NON” The client does not wish to send or receive binary objects in 
messages.  OpenFox™ will replace all binary objects with text on 
outbound messages to the client. 

“HEX” All binary objects will be present in printable hex format.  This 
includes both objects sent to and received from OpenFox™. 

“B64” All binary objects will be present in Base 64 format.  This includes 
both images sent to and received from OpenFox™. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 22 Company Confidential Ver. 1.1 

5.8 Newline Sequence 

 
This field is a string of four printable ASCII characters that represent the way the 

client wishes to send and receive newline sequences in text blocks.  The following 

table lists the possible values and their respective meanings. 

 
 

String Meaning 

“LF  “ New lines are demarked by a single ASCII linefeed character 
(hex value 0A). 

“CR  “ New lines are demarked by a single ASCII carriage return 
character (hex value 0D). 

“CRLF” New lines are demarked by an ASCII carriage return followed 
by an ASCII linefeed (hex value 0D0A). 

 
Please note that in the case of “CR  “ and “LF  “ the trailing white space is two 

ASCII space characters (hex value 20).  This string must always be four 

characters long.  The client should set its preferred method of recognizing 

newlines in its connect message to OpenFox™.  OpenFox™ will always honor 

the client’s choice in this field and will return the identical string when it returns 

the connect message to the client.  All messages from the client to the 

OpenFox™, and from OpenFox™ to the client, will and must use the negotiated 

newline sequence.  Any messages from the client that do not use a newline 

sequence matching the negotiated method may result in errors from the 

OpenFox™. 

 
 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 23    

6 Encryption 

 
The FoxTalk™ protocol supports FIPS 140-2 compliant encryption.  In order to meet 

FoxTalk™ standards, a client will have to use a FIPS 140-2 validated encryption 

software library that supports the following cryptographic routines: 

 2048-bit Public Key RSA Encrypt with PKCS1 padding 

 160-bit SHA-1 hash 

 Arbitrary Length Cryptographically Secure Psuedo-Random Number Generation 

 128-bit AES in CBC mode with PKCS7 padding 

 

The FoxTalk™ protocol uses the RSA algorithm during Key Negotiation to protect the 

secret AES key and also to perform one-way authentication of the OpenFox™ server.  

The random number generator is used to chose session values (nonces and AES key) and 

also on each data message to chose an IV value.  The SHA-1 hash is used to ensure the 

decryption results in valid plain-text (message validation).  The FoxTalk™ protocol uses 

the Advanced Encryption Standard (AES) for the encryption of messages.  AES uses the 

Rijndael encryption algorithm.  Currently FoxTalk™ supports running AES with 128-bit 

keys, 128-bit blocks, CBC (Cipher Block Chaining) mode, and PKCS7 padding. 

 
Below is a more detailed explanation of the encryption components used by FoxTalk™. 

 

6.1 Key Negotiation 

 
As documented above, after encryption is negotiated to ‘Y’ during the Connect 

Message exchange, the client and server must exchange a series of three Key 

Negotiation Messages (Type K frames) to set the AES encryption key for the 

session.  These messages are detailed below in the proper order. 

 

6.1.1 K1 Message 

 

First, the server will send a Type K message to the client that contains the 

server nonce value (this message is nominally referred to as the K1 

message).  The data portion of the frame will contain only 16 bytes (128 

bits) of server-chosen random data.  The client must return this value, 

known as the server nonce, to prevent replay attacks against the server. 

 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 24 Company Confidential Ver. 1.1 

6.1.2 K2 Message 

 

After receiving the K1 message from the server, the client must construct 

a message that returns the server nonce and gives the server a randomly 

chosen session AES key as well as a client nonce.  This message is 

nominally referred to as the K2 message.  The client must first use its 

cryptographically secure pseudo-random number generator to construct a 

16 byte (128 bit) client nonce, and then a 16 byte (128 bit) AES key.  It 

then concatenates these values together with the server nonce in sequence 

as follows: 

 

128 bit client nonce 128 bit AES key 128 bit server nonce 

 

This sequence is then run through the SHA-1 hashing algorithm which 

produces a 20 byte (160 bit) hash value.  This hash is appended to the 

data, so that the sequence is now: 

 

128 bit client 

nonce 

128 bit AES 

key 

128 bit server 

nonce 

160 bit SHA-1 

hash 

 

The total length of this is 544 bits, or 68 bytes.  The next step for the client 

is to encrypt this data to protect it on the wire for transmission to the 

OpenFox™ server.  The algorithm used to protect this K2 message is 

2048-bit RSA.  The client is presented (through an out of band method) 

with the RSA Public Key for the OpenFox™ server (in the case of 

OpenFox™ Desktop, this key is built into the product).  The client uses 

this key, with PKCS1 padding mode, to encrypt the above 68 bytes of 

plaintext using an RSA Public Key Encrypt method call.  This call will 

result in 2048 bits (256 bytes) of cipher text.  This cipher text is the entire 

data content of the K2 message which is now sent to OpenFox™. 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 25    

6.1.3 K3 Message 

 

The OpenFox™ server receives the K2 message from the client and 

decrypts it using its RSA private key.  The decryption produces the 68 

bytes of plain text constructed by the client.  The server ensures that the 

SHA-1 hash value is correct and that the server nonce has been returned 

correctly, then sets the AES session key to the value chosen by the client.  

The final step in encryption negotiation is to let the client know the 

negotiation is complete by returning the client’s nonce.  The OpenFox™ 

server does this with this final Type K message, nominally referred to as 

the K3 message.  To perform this step the encryption method uses is now 

identical to the method used for all Type E frames, nominally referred to 

as the FoxTalk™ Frame Encryption Technique. 

The OpenFox™ server first computes the SHA-1 hash value of the plain 

text data.  In this case, the K3 message has only the client nonce as the 

plain text.  So, the server runs the 128 bit (16 byte) client nonce data 

through the SHA-1 hash algorithm and appends the resultant 160 bit (20 

byte) output to the plain text as follows: 

 

128 bit client nonce 160 bit SHA-1 hash value 

 

This results in 188 bits (36 bytes) of cipher input.  Next, the server 

chooses a random 128 bit (16 byte) Initialization Vector.  This vector is 

used to run the above cipher input through the AES encrypt algorithm, in 

CBC mode, with PKCS7 padding.  The AES algorithm, with padding, will 

result (in this case) in 48 bytes of cipher text output.  The final K3 data is 

constructed by pre-pending the cipher text output with the IV value as 

follows: 

 

128 bit Initialization Vector 48 byte encrypted K3 data 

 

This message, now 64 byte long, is sent to the client thereby completing 

the encryption negotiation.  The client should decrypt this K3 message, 

check that the hash value is correct, and then ensure that its client nonce 

has been returned properly.  Any failure should result in an immediate 

disconnect from the server. 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 26 Company Confidential Ver. 1.1 

6.2 FoxTalk™ Frame Encryption Technique 

 

This section documents the technique used by the FoxTalk™ protocol to encrypt 

and decrypt all Type E frames (as well as the K3 message above). 

 

6.2.1 Encryption Technique 

 

The encryption technique is: 

 Compute the SHA-1 hash value of the plaintext 

 Append the SHA-1 hash value to the plaintext to construct the AES 

cipher input 

 Randomly choose a 128 bit (16 byte) Initialization Vector (IV) 

 Use the above IV along with the AES session key to encrypt the cipher 

input 

 Construct the frame data by first copying the IV, then the cipher output 

 

6.2.2 Decryption Technique 

 

The decryption technique is the exact reverse: 

 Copy the first 128 bits (16 bytes) into the IV value and use it along 

with the AES session key to decrypt the remaining received bytes. 

 Take off the last 160 bits (20 bytes) of the output and copy into a 

received hash value 

 Compute the SHA-1 hash value of the remaining bytes and make sure 

it matches the received hash value 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 27    

6.2.3 Frame Length Calculation 

 

There is one more thing to be aware of when conducting encryption 

operations, namely, the negotiated maximum frame length.  There is a 

calculation to make sure that the plain text input is small enough so that 

when the 20 byte SHA-1 hash, the PKCS7 padding, and the 16 byte IV are 

all added the total will still be less than the maximum frame length.  To 

get this value, perform the following steps: 

 Start with the maximum frame length value 

 Subtract 12 bytes (for the start pattern, frame length, and stop pattern) 

 Subtract the FoxTalk™ header length (4 bytes) 

 Subtract the IV length (16 bytes) 

 Round the value down to the nearest smaller number that is evenly 

divisible by the cipher block length (16 bytes) 

 Subtract the Hash length (20 bytes) 

 Subtract 1 (must reserve at least one byte for PKCS7 padding) 

 

6.2.3.1 Example 1 

 

To illustrate, here is an example of the above calculation done if 

OpenFox™ negotiated a maximum frame length of 8000: 

 Start with maximum frame length: 8000 

 Subtract 12 bytes (for the start pattern, frame length, and stop 

pattern): 7988 

 Subtract the FoxTalk™ header length (4 bytes): 7984 

 Subtract the IV length (16 bytes): 7968 

 Round the value down to the nearest smaller number that is evenly 

divisible by the cipher block length (16 bytes): 7968 (already 

evenly divisible by 16). 

 Subtract the Hash length (20 bytes): 7948 

 Subtract 1 (must reserve at least one byte for PKCS7 padding): 

7947 

 

So, we would have to block plaintext into 7947 byte blocks before 

encrypting them to ensure the encryption overhead will not exceed the 

maximum negotiated frame length. 

 



FoxTalk™                                                                                          Protocol Specification 

Pg. 28 Company Confidential Ver. 1.1 

6.2.3.2 Example 2 

 

Here is another example of the calculation this time if OpenFox™ 

negotiated a maximum frame length of 5000: 

 Start with maximum frame length: 5000 

 Subtract 12 bytes (for the start pattern, frame length, and stop 

pattern): 4988 

 Subtract the FoxTalk™ header length (4 bytes): 4984 

 Subtract the IV length (16 bytes): 4968 

 Round the value down to the nearest smaller number that is evenly 

divisible by the cipher block length (16 bytes): 4960 

 Subtract the Hash length (20 bytes): 4940 

 Subtract 1 (must reserve at least one byte for PKCS7 padding): 

4939 

 

In this case, we would have to block plaintext into 4939 byte blocks 

before encrypting them to ensure the encryption overhead will not 

exceed the maximum negotiated frame length. 

 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 29    

7 Device Identification 

 

This section of the document discusses the identification of devices.  After exchanging 

the Connect Message sequence, the OpenFox™ server must identify the device with 

which it is communicating.  Although the FoxTalk™ protocol is in use in many different 

situations, the most common methods of device identification are: 

 Regional Server/Gateway identified by peer IP address 

 3
rd

 Party Client identified by a logon transaction 

 OpenFox™ Desktop/Messenger client identified by a license transmission 

 

This document will only consider the case of the OpenFox™ Desktop/Messenger 

implementation, since the others are non-standard and vary according to installation. 

 

After finishing the encryption negotiation (or immediately after the Connect Message 

exchange in the case of non-encrypted sessions) the OpenFox™ Desktop client must send 

the local copy of its license file to the OpenFox™ server.  If encryption has been 

negotiated on this session, then this message should be encrypted using the standard 

FoxTalk™ Frame Encryption Technique (detailed above in section 6.2.1) and sent with a 

Type of I.  The OpenFox™ server will receive the Type I message (and decrypt it if 

required), which will now contain the local license file (this file is encrypted with a secret 

key that only the server knows).  The server now uses its secret license key to decrypt the 

license file and validate that the identification is acceptable.  If so, the server constructs a 

message back to the client to give the client its detailed runtime information including: 

 The workstation’s OpenFox™ Station Name 

 The workstation’s Default ORI 

 The workstation’s Agency ID 

 The workstation’s Agency Name 

 The Local Encryption Key (used to uniquely encrypt the workstation’s mail 

folders). 

 

This response message is sent back to the client as another Type I frame (that is also 

encrypted if required).  Upon receiving this message, the identification phase is complete 

and the client can commence regular message exchange. 



FoxTalk™                                                                                          Protocol Specification 

Pg. 30 Company Confidential Ver. 1.1 

 

 

 

 

 

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * * 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 31    

Appendix A – FoxTalk™ Examples 

 
This Appendix contains several complete examples of FoxTalk™ frame exchanges to be 

used as a reference.  The characters in the hex representations have background colors 

according to the part of the frame they occupy as follows: 

 

Red:  FF00AA55 Frame Start or Stop Pattern 

Magenta: 00000024 Frame Length Field 

Yellow: 00014359 Frame Header Field 

Blue:  4236344C Frame Payload 

 

Example 1: Connect message exchange 

 
In this example a client has just established a successful TCP session with 

OpenFox™ and wishes to negotiate the following parameters: 

 

FoxTalk™ Version 1.0 

Max Frame Length 65,000 

Use Encryption is No 

Preferred Object Encoding is Base 64 

Preferred new-line sequence is Linefeed only 

 

Below is a hex representation of the ensuing frame: 
 
FF00AA550000002400014359000100000000FDE8000000004E423634 

4C46202055AA00FF 

 
The frame start and stop patterns are present at the each end of the frame, and the 

frame length is hex 24 bytes (which is decimal 36).  As can be verified by counting 

the bytes, this represents the total size of the frame from the first FF to the last FF.  

The Frame Header (yellow) is deconstructed to: 

 

Field Content Description 

Exchange ID 0001 ID value was chosen arbitrarily by the client 

Frame Type 43 ASCII „C‟ for a Connect Message Type 

End of Exchange 
Indicator 

59 ASCII „Y‟ to signify end of message 

 
The Frame Payload (blue) is a Connect Message which is deconstructed to: 



FoxTalk™                                                                                          Protocol Specification 

Pg. 32 Company Confidential Ver. 1.1 

 

Field Content Description 

Major Version 
Number 

0001 Major version 1 

Minor Version 
Number 

0000 Minor version 0 

Maximum 
Frame Length 

0000FDE8 Hex FDE8 is decimal 65,000 which is the 
maximum frame length the client can handle 

Maximum Idle 
Time 

0000 Set to zero by client as per specification 
(section 5.4) 

Default 
Timeout 

0000 Set to zero by client as per specification 
(section 5.5) 

Use 
Encryption 

4E ASCII „N‟ to signify no encryption 

Object 
Encoding 
Technique 

423634 ASCII string of value “B64” to signify Base 64 
object encoding technique 

Newline 
Sequence 

4C462020 ASCII string of four bytes value “LF  “ to 
signify use Linefeeds only for newlines. 

 
After receiving this message the OpenFox™ switch will adjust the parameters and 

return a Connect Message.  For the purpose of example, let’s presume that 

OpenFox™ in this case is configured for the following parameters: 

 

FoxTalk™ Version 1.0 

Maximum Frame Length 8,000 

Use Encryption – yes or no accepted 

Maximum Idle Time is 3 minutes (180 seconds) 

Default Timeout is 30 seconds 

 

In this case, OpenFox™ must lower the maximum frame length requested by the 

client to 8,000 bytes.  OpenFox™ will also present the two time fields (Max Idle 

Time and Default Timeout) and will honor the remaining values requested by the 

client.  Please note that if the OpenFox™ had a maximum frame size of 120,000, that 

OpenFox™ would have respected the 65,000 byte maximum requested by the client. 

 
Below is a hexadecimal representation of the ensuing response frame: 

 
FF00AA5500000024000143590001000000001F4000B4001E4E423634 

4C46202055AA00FF 

 
Again, this frame contains the start and stop pattern and has a length of hex 24 

(decimal 36).  Below is a breakdown of the Frame Header: 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 33    

 

Field Content Description 

Exchange ID 0001 ID value chosen by the client is returned by 
OpenFox™ 

Frame Type 43 ASCII „C‟ for a Connect Message 

End of Exchange 
Indicator 

59 ASCII „Y‟ to signify end of message 

 
The breakdown of the Connect Message in the Frame Payload is: 

 

Field Content Description 

Major Version 
Number 

0001 Major version 1 

Minor Version 
Number 

0000 Minor version 0 

Maximum 
Frame Length 

00001F40 Hex 1F40 is decimal 8,000 which is the 
maximum frame length the OpenFox™ can 
handle.  Since this was smaller that the 
client‟s value it was overridden by OpenFox™ 

Maximum Idle 
Time 

00B4 Hex B4 is decimal 180 specifying a maximum 
idle time of 3 minutes 

Default 
Timeout 

001E Hex 1E is decimal 30 specifying a default 
timeout of 30 seconds. 

Use 
Encryption 

4E ASCII „N‟ to signify no encryption 

Object 
Encoding 
Technique 

423634 ASCII string of value “B64” to signify Base 64 
object encoding technique as requested by 
the client 

Newline 
Sequence 

4C462020 ASCII string of four bytes value “LF  “ to 
signify use Linefeeds only for newlines as 
requested by the client 

 
After this frame is sent by OpenFox™ there is now an open FoxTalk™ session 

between the client and the OpenFox™.  The final negotiated session parameters are: 

 

FoxTalk™ Version 1.0 

Maximum Frame Length 8,000 

Maximum Idle time 3 minutes 

Default Timeout 30 seconds 

No encryption will be used 

Objects will be encoded with the Base 64 method 

All text newlines will be represented by Linefeed characters only 

 
 



FoxTalk™                                                                                          Protocol Specification 

Pg. 34 Company Confidential Ver. 1.1 

Example 2: Heartbeat exchange 

 
This example will cover a case where a client’s connection to OpenFox™ has been 

idle for the maximum allowed idle time (as negotiated with the Connect Message 

exchange).  The client must now construct a FoxTalk™ Heartbeat Frame and deliver 

it to OpenFox™.  Below is a hexadecimal representation of the heartbeat frame: 

 
FF00AA55000000101B04485955AA00FF 

 
This frame has the start and stop patterns at the beginning and ending of the frame, 

and has the frame length field set to hex 10 (decimal 16) which is the length of the 

entire frame. 

 

Since this frame is a Heartbeat type it does not contain a payload.  Also, since it is not 

a Data Message type it will never include the encryption fields of the FoxTalk™ 

header (even if encryption had been negotiated to ‘Y’ on this session).  Below is a 

deconstruction of the FoxTalk™ Header: 

 

Field Content Description 

Exchange ID 1B04 ID value chosen arbitrarily by the client 

Frame Type 48 ASCII „H‟ for a Heartbeat Exchange 

End of Exchange 
Indicator 

59 ASCII „Y‟ to signify end of message 

 
When OpenFox™ receives this frame it will reset the connection’s idle timer and 

echo the heartbeat back with the following frame (again in hexadecimal 

representation): 

 
FF00AA55000000101B04485955AA00FF 

 
This frame is identical to the frame received from the client.  It is of length hex 10 

(decimal 16) and contains no payload or encryption fields.  Below is the breakdown 

for the FoxTalk™ header: 

 

Field Content Description 

Exchange ID 1B04 ID value chosen by the client is returned by 
OpenFox™ 

Frame Type 48 ASCII „H‟ for a Heartbeat Exchange 

End of Exchange 
Indicator 

59 ASCII „Y‟ to signify end of message 

 
 
 



Protocol Specification  FoxTalk™ 

Ver 1.1 Company Confidential Pg 35    

Example 3: Non-encrypted single frame data message  

 
In this example the client sends a simple QV transaction to OpenFox™ on a session 

which has negotiated no encryption.  OpenFox™ will respond with an 

acknowledgement.  The purpose is to demonstrate single framing and non-encrypted 

data message exchange. 

 

For this example, the message from the client will be an OFML QV transaction as 

follows: 

 
<OFML> 

 <HDR> 

  <ID>12345ABCDE</ID> 

  <DAC>SP01</DAC> 

  <REF>123123123</REF> 

  <MKE>QV</MKE> 

  <ORI>INXML0000</ORI> 

  <SUM>"QV:EXAMPLE LIC/ABC123"</SUM> 

 </HDR> 

 <TRN> 

  <LIC>ABC123</LIC> 

  <LIS>IN</LIS> 

 </TRN> 

</OFML> 

 

Below is a hexadecimal representation of the ensuing FoxTalk™ frame sent by the 

client: 

 
FF00AA55000000CA02174D593C4F464D4C3E3C4844523E3C49443E31 

3233343541424344453C2F49443E3C4441433E535030313C2F444143 

3E3C5245463E3132333132333132333C2F5245463E3C4D4B453E5156 

3C2F4D4B453E3C4F52493E494E584D4C303030303C2F4F52493E3C53 

554D3E2251563A4558414D504C45204C49432F414243313233223C2F 

53554D3E3C2F4844523E3C54524E3E3C4C49433E4142433132333C2F 

4C49433E3C4C49533E494E3C2F4C49533E3C2F54524E3E3C2F4F464D 

4C3E55AA00FF 

 
The frame starts and stops with the appropriate patterns and has a length field of hex 

CA (decimal 202) which is the entire length of the frame.  Below is a deconstruction 

of the FoxTalk™ Header: 

 
 
 
 
 

Field Content Description 



FoxTalk™                                                                                          Protocol Specification 

Pg. 36 Company Confidential Ver. 1.1 

Exchange ID 0217 ID value chosen arbitrarily by the client 

Frame Type 4D ASCII „M‟ for a Data Message frame 

End of Exchange 
Indicator 

59 ASCII „Y‟ to signify end of message 

 
The Frame Payload contains the data of the message (in this case, a series of ASCII 

characters representing the OFML message text). 

 

After receiving this frame, OpenFox™ will accept the message at the protocol level 

(i.e. before the payload content is parsed) with the following FoxTalk™ frame: 
 
FF00AA55000000100217415955AA00FF 

 
As always the frame starts and stops with the appropriate patterns.  The frame length 

is hex 10 (decimal 16) which represents the overall length of the frame.  The header 

breakdown is: 

 

Field Content Description 

Exchange ID 0217 ID value chosen by the client is returned by 
OpenFox™ 

Frame Type 41 ASCII „A‟ for an Acknowledgement frame 

End of Exchange 
Indicator 

59 ASCII „Y‟ to signify end of message 

 
After receiving this frame the client knows the OpenFox™ has safely received the 

QV transaction. 

 


